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ABSTRACT

This paper shows how the EMD can successfully uncou-
ple the seasonal and interannual components of NDVI sig-
nals from induced satellite artifacts. The known delay in
crossing the equator of the afternoon National Oceanic and
Atmospheric Administration (NOAA) polar satellites re-
sults in changes of illumination that affects measurements
made by the advanced very high resolution radiometer
(AVHRR). Despite the improved processing, correction of
calibration loss and atmospheric effects, one of the stan-
dard AVHRR, products, the normalized difference vegeta-
tion index (NDVI) time series, still may contain variations
due to orbital drift or changes in sun-target-sensor geom-
etry. In this study, we identify solar zenith angle (SZA)
trends associated to orbital drifts and analize their effects
on NDVI. We present the adaptive empirical mode decom-
position (EMD) method as a mean to identify and remove
the induced SZA trend from NDVI time series. The EMD
is based on the local characteristic time scale of the data,
and it is usable to give sharp identifications of embedded
structures of nonlinear and nonstationary processes. The
approach was tested on 1 degree NDVI global data sets.
The results show : (1) that regions in the tropics, espe-
cially tropical forest, are the most SZA-affected, and (2)
the high northern latitudes are less contaminated.
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sonal patterns; solar zenith angle;orbital drift; empirical
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1. INTRODUCTION

The capability of satellite observations to monitor the dy-
namics of the Earth’s surface provides a basis for under-
standing temporal trends in vegetation and their signifi-
cance. In the 20 year time series of NDVI from NOAA-
AVHRR data is critically important that these measure-
ments represent accurately the Earth’s environment at the
time of imaging. The high temporal frequency has made
AVHRR data invaluable in the study of large area vege-
tation dynamics [1], [2]. This satellite-sensor system was
primarily designed for cloud, atmospheric and sea-surface
temperature analysis; however, the PM platforms of the
NOAA satellites have provided the spatial coverage and
spectral resolution needed for monitoring global vegeta-
tion dynamics on a daily basis. Vegetation indices are by
far the most widely-used product of the AVHRR sensor
[3]. Most of these applications are based on the normal-
ized difference vegetation index (NDVI), which is the ra-

tio of the near infrared (NIR) and visible (VIS) radiances,
NDVI = %. This ratio yields a measure of pho-
tosynthetic capacity such that the higher the value of the

ratio, the more photosynthetically active the cover type
[4].

Still, high data frequency have not come without draw-
backs. Known limitations of the AVHRR instrument due
to the orbital drift in the PM platforms, the coarse res-
olution, and wide bandwidths in the VIS and NIR wave-
lengths generate significant inaccuracies in NDVTI interpre-
tation: (1) a greater probability of sub-pixel clouds that
interfere with the vegetation signal, (2) significant vari-
ation in the sun-target-view geometries and illumination
of AVHRR measurements combined with surface bidirec-
tional reflectance (BRDF) properties of the land surface,
topography, and soil background reflectance [5]. In or-
der to reduce these inaccuracies, atmospheric correction
and standard compositing techniques are common prac-
tice in all NDVI processing systems [6], [7]. Among them,
the maximum NDVI compositing (MVC) technique has
been used in nearly all operational AVHRR, processing
chains [2]. The MVC procedure requires the processing
of a series of multitemporal georeferenced satellite data
into NDVI images. On a pixel-by-pixel basis, each NDVI
value is examined, and only the highest value is retained
for each pixel location. Holben [8] showed that MVC im-
agery is highly related to green vegetation dynamics, and
the aforementioned problems have been minimized. More-
over, Pinzén et al. [9] showed that MVC provides the im-
age with highest spatial coherence among the compositing
techniques most commonly used.

Despite the improved processing, correction of calibration
loss and atmospheric effects, NDVI still may contain vari-
ations due to orbital drift and changes in sun-target-sensor
geometry, since the closure of such a system involves more
unknowns than measurable quantities [5], [10], [11]. Re-
moving these nonvegetative effects from the time series re-
mains a challenge, since an analytical or numerical solution
to the system would be prohibitive in real time processing,
given the huge amount of data to process, both spatially
and temporally.

Alternatively, to eliminate the interferences due to orbital
drift, one could ignore the underlying governing equations
entirely and experimentally try to find an effective descrip-
tion of the interactions between the NDVI and SZA trends
[12]. This paper proposes the adaptive EMD method as an



approach to identify and remove the SZA-drift components
from the NDVI. To be precise, we decompose NDVI and
SZA signals in terms of intrinsic mode functions (IMF) us-
ing the EMD to simplify and describe more accurately the
NDVI-SZA relationship. In particular, we can tune the
EMD to uncouple the seasonal and interannual compo-
nents of NDVI signals from SZA-drift induced structures.

The primary objective of this study is to examine and cor-
rect the influence of changing SZA due to orbital drift on
measured NDVI data. The standard processing of NDVI
imagery is briefly described; the EMD technique is intro-
duced with examples of trend detection in SZA latitudinal
profiles as a means to measure and correct orbital drift im-
pact; a correction approach is tested and evaluated within
the framework of SZA-filtering on 1° NDVI data sets.

2. EMPIRICAL MODE DECOMPOSITION

Due to the limitations of the available methods to ana-
lyze non-linear and non-stationary data, Huang et al. [13]
proposed a new alternative for a faithful representation of
data with these characteristics that besides shows clearly
a physical scale or frequency content.

EMD decomposes a signal into local intrinsic mode func-
tions (IMF) plus an intrinsic trend acting at different (in-
stantaneous) frequencies. Different from other data analy-
sis methods, this method is totally adaptive: it derives the
IMF basis from the data itself. IMF's are computed from
successive (sifting) differences of local means derived lo-
cally from upper and lower envelopes of the signal [13], [14].
The result is an IMF with (a) a number of extrema and a
number of zero-crossings either equals or differing at most
by one and (b) with zero local mean value defined from
the envelopes of local maxima and local minima at any
point. With these two properties, the derived IMFs will
have a well behaved Hilbert (instantaneous) spectrum [13].
These properties allow us to identify and remove artifacts
connected to the drift of NOAA satellites. The developed
EMD filter extracts seasonal and interannual variations as
byproducts of the NDVTI signal. These features open new
possibilities of analysis at different temporal scales.

3. PROCESSING OF NDVI IMAGERY

The data examined here are obtained from the Global In-
ventory Mapping and Monitoring Study (GIMMS) pro-
cessing system using 15-day compositing at 1°. The
GIMMS processing system uses MVC as compositing tech-
nique and cloud screening prior to compositing, using an
AVHRR channel 5 thermal threshold value over Africa
(283K) and South America (273K). Pixels having scan
angles greater than 45 degrees from nadir view and pix-
els associated with unrealistic reflectance values were also
screened prior to compositing [15].

Figure 1 shows uncorrected NDVI data at various 1°
latitudes and longitudes. Vegetated tropical areas (Fig-
ure 1(b-f)), and especially tropical forests (Figure 1(c-f))
present an evident trend connected to the orbital drift or
SZA variation. Desert areas (Figure 1(a)) and Northern
latitudes (Figure 1(g-i)) appear less affected by changes in
SZA. In fact, previous studies in growing season patterns
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Fig. 1. Uncorrected NDVI data at particular 1° latitudes and lon-
gitudes. Vegetated tropical areas (b-f), and especially tropical
forests (c-f), present an evident trend connected to the SZA
variation. Desert areas (a) and Northern latitudes (g-i) appear
less affected by changes in SZA.

using NDVI from AVHRR [16], [17], [18], [19] indicate that
there is no statistically meaningful relation between NDVI
and SZA. In other words, since the magnitude of SZA
trends at those higher latitudes is very small compared
with the high seasonal variation in the NDVI of vegetated
areas, its contribution is minimal to the NDVI signal at
those latitudes (see Figure 2). However, explicit quantifi-
cation of these contributions has not been reported. More-
over, Gutman [20], using other AVHRR data set, ques-
tioned the reliability of NDVI data for inferring the north-
ern latitude greening trend since potential artifacts related
to SZA and intersensor changes could remain in the data.



4. IMPACT OF ORBITAL DRIFT ON NDVI
AND EMD-SZA FILTERING

As discussed here, the EMD method adjusts itself to local
extrema and generates zero references and trends by the
sifting process. Figure 2 shows the effects of the satellite
drift on the SZA at different 10° latitude bands. An in-
creasing trend is observed in each satellite due to its delay
in the equatorial crossing time. This trend, overimposed
on each plot, is accurately extracted and associated as the
EMD-trend. It is noteworthy to observe that drifts effects
are more pronounced at lower latitudes (higher slopes),
whereas seasonal variations dominate at higher latitudes.
Note also that equatorial plots (10S to 10N) have an extra
oscillation due to solar nadir moving past the target lat-
itude, causing an increase in SZA at six month intervals
rather than at yearly intervals [5]. The components of the
EMD, as Figure 2 shows, are usually physically meaning-
ful, since each scale is defined by the physical data itself.

Similarly, the EMD is used to extract NDVI trends that
may be associated to satellite orbital drift, reducing the in-
terference of these components in the NDVI signal. Then,
the corrected NDVI time series is decomposed into two
EMD-components: a wave-seasonal and trend. If the
NDVTI is affected by orbital drift, its trend component in-
herits solely this artifact. Following Huang et al. sugges-
tion [13], the SZA artifact can be removed by using IMF
as a time-space filter. In this case, NDVI trends and SZA
trends are correlated and the corresponding SZA trend is
filtered out from NDVT signals by EMD-filtering.

Table 1 shows the results of the SZA EMD-filtering ap-
proach for selected 1° degree latitude-longitude pixels from
regions representing different biomes. It is found that the
percentage variance of NDVI variability explained by the
filtered ts;qc component decreases as latitude increases (1
- p) and as vegetation biomes decreases (a, b). This im-
plies that ts,4c variability is very small at those northern
latitude regions and the NDVI is minimally sensitive as
vegetation biomes decreases. This result is confirmed by
the coefficient of determination between ¢s.q.c and the cor-
respondent 10° latitude SZA trends. In most of those re-
gions 72 is less than 75. This is not the case for tropical
areas (c - j), especially tropical forest (c - g), where the
percentage variance explained is greater than 10 and the
r? above 85.

Figure 3 shows in each panel, the uncorrected NDVI and
its associated trend (U-time series), the solar zenith an-
gle component ts.o. removed (S in the figure) and the
correspondent corrected NDVI and trend (C-time series).
Each panel represents the same 1° degree time series at the
latitude-longitude pixels described in Table 1. This con-
firms the main conclusion of Table 1: regions in the tropics,
especially tropical forest, are the most SZA-affected, (2)
the high northern latitudes and regions with low vegetation
biomes are less contaminated, and (3) all remaining com-
ponents in the C-time series are found to be statistically
independent of the SZA. Therefore, the EMD-filtering ap-
proach presented here constitutes a sound SZA correction
technique, especially in tropical forests where the NDVI
signal is shown to be more affected. It is worthy to notice
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Fig. 2. Solar zenith angle drift by 10° latitude bands. Drifts
effects are more pronounced at lower latitudes (higher slopes),
whereas seasonal variations dominate at higher latitudes. An
extra oscillation is observed in equatorial plots (10S to 10N)
due to solar nadir moving past the target latitude.

from Figure 3 that the SZA EMD-filtering keeps known
salient features found with the NDVI time series like the
drop in the Sahel in 1984-1985 (b) due to a serious drought
[21], the north-eastern Brazil NDVI trends (h) related to
the El Nifno south oscillation (ENSO) [22], and the afore-
mentioned long term stability of deserts (a), and tropical
forests (c-g) [2]. There is much further work that needs
to be done for a deeper analysis of the corrected C-time
series, but that is beyond the scope of this work. From the
corrected trends we can still see an expected discontinuity
around September of 1994. This discontinuity is due to
the lost of NOAA-11 and the lack of new satellites that
could take its place and continue the recollection of data.
The only option available to preserve the continuity of the
time series was the old NOAA-9 passing now the equator
in descending node. Late January of 1995, NOAA-14 was
operational and took NOAA-9’s place.



TABLE 1
PERCENTAGE VARIANCE OF NDVI EXPLAINED BY THE FILTERED {s2qc
COMPONENT, COEFFICIENT OF DETERMINATION OF ORBITAL DRIFT SZA
TRENDS AND EXTRACTED NDVT #,,4.. ALL COEFFICIENTS ARE
SIGNIFICANT WITH p < 0.00001.

tszac
Location (Lat, Lon) % | r?
a) Sahara (23N, 3E) 2 | 72
b) Sahel (15N, 14W) | 3 | &4

c¢) Central Forest (1S, 20E) 14 | 87
e) Center America | (15N, 85W) | 18 | 86
g) Amazon (5S, 7T0W) 23 | 87
i) Indochina (15S, 105E) | 9 | 74
7) Australia (255, 135E) | 26 | 92

1) Great plains (45N, 105W) | 2 | 80
m) Canada (55N, 110W) | 1 | 68
o) Central Russia (55N, 35E) 1 | 68
p) Siberia (63N, 100E) | 1 | 51

5. DISCUSSION AND CONCLUSIONS

In summary, Figure 4 shows in what percentage and what
regions the SZA artifact affects the NDVI signal. The
coefficient of determination between correspondent SZA
trends at 10° latitude bands and (a) uncorrected NDVI,
(b) filtered out SZA component, and (c) corrected NDVI
are shown. The tropics and especially tropical forests are
the most affected. The corrected NDVI as expected shows
a low correlation.

Figure 4(d) shows the variability of the NDVI signal given
by the temporal standard deviation of each pixel. Deserts
are the most stable as many studies have assumed. The
Australian desert shows that a SZA correction is needed.
The desert calibration used in GIMMS data stream is
based on an expected stable region of the Sahara desert
[15], which shows very different characteristics from the
Australian desert. This confirms that one cannot assume
that any spurious trend in NDVI over stable targets, e.g.
deserts, can be linearly extrapolated and corrected in all
surfaces, not even in similar surfaces as previous efforts
have suggested. This figure also shows that tropical forests
are not as stable. However, as the SZA artifacts are re-
moved from the data, most of this variance is attenuated
(see Figure 4e) and its stability increases (Figure 4f).

In Figure 4 (d,e,f), one can see a clear horizontal arti-
fact on the South American continent around Colombia.
Restricted subsetting of the raw AVHRR 1b orbits dur-
ing the 1980s resulted in data gaps along the northern
South American continent from 1981-1989. When comput-
ing resources became more abundant in the 1990s, Central
America and northern South America were reprocessed to
fill in the missing area. The horizontal bands seen in the
1-degree data are the residual data drops resulting from
these two processing streams.

Concluding, we have presented an EMD approach to im-
prove AVHRR-NDVI time series by removing spurious
SZA trends induced by satellite drift. By using this de-
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Fig. 3. Each panel shows the uncorrected NDVI and its associated
trend (U-time series), filtered SZA component ts,q. (S-time
series) and SZA corrected NDVI and its associated corrected
trend (C-time series) at different 3° by 3° latitude-longitude
regions. U- and S-time series are shifted by the range of varia-
tion of the particular NDVTI in each pannel.

composition, we found a mean trend in the NDVI that
can be explained almost entirely by SZA trends. The re-
maining IMF components of the NDVI were found to be
statistically independent of the SZA. Although the correc-
tion eliminates up to 30 percent of the variability in NDVI
signals, it keeps all known vegetation features captured by
the NDVI time series. Therefore, we have shown that the
EMD-filtering approach of the associated mean SZA trend
from NDVI time series constituted a sound SZA correc-
tion technique. In particular, we have removed SZA trends
from tropical areas, especially forests, where the NDVI sig-
nal was shown to be more affected. As an additional gain,
we have shown that the corrected NDVI and associated



IMFs features can be used in concert for better spatial
characterization and time series analysis.
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b) r2(SZAC)
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Fig. 4. Coefficient of determination between SZA trends and
(a) uncorrected NDVI trend (undvi), (b) predicted SZA trend
(tszac), and (c¢) SZA-corrected NDVI trend (cndvi); (d) ratio
between variances of SZA-corrected and uncorrected NDVT; (e)
variance of corrected NDVI normalized by maximum variance
(200); (f) temporal median value of corrected NDVI trends nor-
malized by its maximum median value (582) with 12 levels of
variation (uniform quatization).
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